1. Draw the keyword tree for $P = \{\text{potato, tattoo, theater, other}\}$ and include the non-trivial (non-root) failure links

2. Draw the suffix tree for $T = \text{"banana"}$. Add suffix links and show the edge label compression.

3. Show the sequence of explicit extensions the Ukkonen algorithm uses for constructing the suffix tree in 2.
 - Ukkonen construction of suffix tree for $T = \text{"rerirra"}$

Adding failure links

- Two nodes $u, v, u \neq v$
- Node labels $L(u), L(v)$
- Suffix of $L(u)$, $S_i(L(u)) = L(v)$
- Links:
 $$ \max \{L(v) - S_i(L(u)) : i \geq 0\} $$

P = \{potato, tattoo, theater, other\}

- Ukkonen construction of suffix tree for $T = \text{"rerirra"}$
Add suffix links

- Links between internal nodes u, v
- Node labels L(u), L(v)
- Suffix link (u, s(u)) = (u, v) iff
 - L(u) = xα
 - L(v) = α
- #?

Adding suffix links

Add edge label compression

- Index pairs to label edges
 - Start and end in T
- T = banana$

Draw the keyword tree for $P = \{\text{potato}, \text{tattoo}, \text{theater}, \text{other}\}$ and include the non-trivial (non-root) failure links.

Draw the suffix tree for $T = \text{"banana"}$. Add suffix links and show the edge label compression.

Show the sequence of explicit extensions the Ukkonen algorithm uses for constructing the suffix tree in 2.

- Ukkonen construction of suffix tree for $T = \text{"rrerirra"}
High level suffix extension (Ukkonen) algorithm

HighLevelUkkonen(T):
1. Construct tree I_1
2. for i in range($|T| - 1$):
 1. Find end of path labeled $T[j:i]$ in I_i
 2. Extend that path by $T[i+1]$ if needed

Running time
1. $O(1)$
2. $|T| = m$
 1. i times
 2. $O(i + 1 - j)$
 2. $O(1)$

Total: $O($____$)$

Three suffix extension rules

- $T[j:i] = \beta$ is suffix of $T[1:i]$
- End of β found, extend such that $|\beta|+1$ is in tree
 1. β ends at leaf
 - Append $T[i+1]$ to label
 2. No path from end of β starts with $T[i+1]$, but path continues
 - Create new leaf edge from end of β and label with $T[i+1]$
 - Number leaf with j
 3. Tree contains $|\beta|+1$
 - Do nothing

Single phase algorithm (SPA)

1. $e = i + 1$
2. for j in range($i + 1, i + 1$):
 1. Use SingleExtensionAlgorithm for explicit extensions
 2. if “rule 3” applies:
 1. break
3. $j_{i+1} = j - 1$

Ukkonen suffix tree construction

<table>
<thead>
<tr>
<th>Phase i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase i=1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Phase i=2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Phase i=3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
</tbody>
</table>

Rule 2

Rule 2

Rule ____

Rule __

Rule __

Rule ___

Rule ___

1. Draw the keyword tree for \(P = \{ \text{potato, tattoo, theater, other} \} \) and include the non-trivial (non-root) failure links.
2. Draw the suffix tree for \(T = \text{"banana"} \). Add suffix links and show the edge label compression.
3. Show the sequence of explicit extensions the Ukkonen algorithm uses for constructing the suffix tree in 2.

- Ukkonen construction of suffix tree for \(T = \text{"rrerirra"} \)
Suffix tree for rrerirra

Gamma ___? Rules ___?