(Some) suffix tree applications

Pål Sætrom

Topics
- Tree examples (yesterday)
- Common substrings
- Matching patterns against text
- Matching suffixes and prefixes
- Combining suffix tree and additional data structures to accelerate search

Suffix tree for rrerira (1-2)

Suffix tree for rrerira (3)

Suffix tree for rrerira (4)

Suffix tree for rrerira (5)
Longest common substring of two strings

Find longest substring common to S and R

Input: Strings $S = s_1…s_n$ and $R = r_1…r_m$

Output: String $T = t_1…t_p$ such that $t_1…t_p = s_{i_1}…s_{i+p}$ and $r_{j_1}…r_{j+p}$ and $\max_{i,j}|T|

Ex:

$S = \text{"gctgca"}$, $R = \text{"atgcgg"}$

Generalized suffix trees solve longest common substring

$T = \{\text{"gctgca"}, \text{"tgc"}\}$

- Time: $O(\)$
- Space: $O(\)$
Longest common substring of several strings

Find longest substring common to \(k \) of \(K \) strings, where \(2 \leq k \leq K \).

Input: Set of strings \(S \), \(|S| = K\)

Output: \(l(k) \) for all \(k \), \(2 \leq k \leq K \), such that \(l(k) \) is the longest substring common for at least \(k \) of the strings in \(S \).

Ex: \(S = \{\text{sandollar, sandlot, handler, grand, pantry}\} \)

<table>
<thead>
<tr>
<th>(k)</th>
<th>(l(k))</th>
<th>one substring</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>sand</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>and</td>
</tr>
<tr>
<td>4</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Finding \(l(k) \)

1. Build generalized suffix tree \(T \) of \(S \)
2. For each internal node \(v \), find the number of distinct string identifiers \(C(v) \)
3. Traverse \(T \) and update vector \(V \), where \(V(k) \) is deepest string depth of node \(v \) such that \(C(v) = k \)
4. Compute \(l(k) \) by scanning \(V \) from largest \(k \) to smallest \(k \) and set \(V(k) = \max \{ V(k), V(k+1) \} \)

Searching with suffix trees

Find all occurrences of \(P \) “gca”, “c”, and “gct” in \(T \) “gctgca”

What if \(P \) is known and \(T \) is unknown?

Computing matching statistics

Given pattern \(P \) and text \(T \), compute matching statistics \(ms(i) \)

Input: Strings \(P = p_1...p_n \) and \(T = t_1...t_m \)

Output: \(ms(i) \) for all \(1 \leq i \leq m \), such that \(ms(i) \) is the length of the longest substring starting at position \(i \) of \(T \) that matches a substring somewhere in \(P \).

Ex:
\(T = \) “gctgca”, \(P = \) “atgcgg”
\(ms(1) = 2, ms(3) = __, ms(5) = __ \)

Relation to exact matching problem?

Computing matching statistics in \(O(m) \)

- Build suffix tree for \(P \)
- Compute \(ms(1) \) by scanning from root

Ex:
\(P = \) “gctgc”
\(T = \) “ctcgca”

- Compute \(ms(i + 1) ? \)

Following suffix links to compute \(ms(i + 1) \)

- \(ms(i) \) ends up in b labeled xy
 - xy is prefix of \(T[i..m] \) so ay is prefix of \(T[i+1..m] \)
 - b is internal node: follow suffix link to \(s(v) \) labeled ay
 - b is on edge: back up, follow suffix link, skip-count \(y \)
 - Continue matching until b’ where mismatch or leaf
 - \(ms(i+1) = \) string depth of \(b’ \)
Computing \(ms \) is \(O(m) \)
- Back up and link traversals is \(O(1) \)
- Total time traversing \(\gamma \) is bounded by node depth (similar to construction algorithm) \(O(m) \)
- Each letter in \(T \) scanned at most twice \(O(m) \)

Reporting locations of matching substrings in \(O(m) \)
- \(p(i) \) is position in \(P \) of substring that matches a substring in \(T \) starting at position \(i \) for exactly \(ms(i) \) places

All pairs of suffix-prefix matches
- For two strings \(S = s_1 ... s_n \) and \(R = r_1 ... r_m \), any suffix of \(S \) that matches a prefix of \(R \) is a suffix-prefix match of \(S \) and \(R \)
- Given set of strings \(S \), find all pairs of max-length suffix-prefix matches

Input: Set of strings \(S = \{S_1, ..., S_k\} \) of total length \(m \)
Output: For each ordered pair \(S_i \) and \(S_j \), \(1 \leq i, j \leq k \), the length \(l(i, j) \) of the longest suffix-prefix match of \(S_i \) and \(S_j \).

Ex:
\(S = \{"gctgca", "atgcgg", "tcggc"\} \)
\(l(1,1) = 6, l(1,2) = 1, l(1,3) = __, l(3,1) = __ \)

Solving all-pairs suffix-prefix problem
- Best possible solution is \(O(m + k^2) \)
- Can generalized suffix tree be used?

Terminal edges in generalized suffix tree are essential
- Terminal edge: edge labeled with only terminal symbol \($ \)
- Represents complete suffix
- Relation to prefixes?

Keeping track of terminal edges solves problem
- Label each internal node \(v \) with indexes of its terminal edges, \(L(v) \)
- Traverse tree depth-first and keep track of terminal edges we have passed
 - Use \(k \) stacks
 - Push \(v \) on stack \(i \) if \(i \in L(v) \)
 - If at leaf \(S_i \), record for each \(i \) the path-label length of node at top of stack \(i \)
 - When backing up from \(v \), pop all stacks \(i \) in \(L(v) \)