Topics

- Keyword trees
- Suffix trees
- Constructing suffix trees

Exact pattern matching recap

- Text T
 - $|T| = m$
 - Ex: "I like bananas and potatoes"
- Pattern P
 - $|P| = n$
 - Ex: "banana"
- Find all occurrences of P in T
 - Naïve: $O(mn)$
 - Possible: $O(m + n)$

Matching sets of patterns

- Text T
 - $|T| = m$
 - Ex: "I like bananas and potatoes"
- Patterns $P = \{P_1, P_2, \ldots, P_z\}$
 - $|P| = \sum |P_i| = n$
 - Ex: {"banana", "potato", "pottery", "poetry", "other", "theater", "tattoo"}
- Find all occurrences of any $P_i \in P$ in T
 - z separate linear time searches: $O(n + zm)$
 - Possible: $O(n + m + k)$, k is the number of occurrences; How?

Keyword trees encode pattern sets

$P = \{"banana", "potato", "pottery", "poetry", "other", "theater", "tattoo"\}$

Keyword trees can be built in $O(n)$

$P = \{"banana", "potato", "pottery", "poetry", "other", "theater", "tattoo"\}$
- Partial tree K_i
 - Encodes patterns $\{P_1, \ldots, P_i\}$

1
Naïve matching takes $O(nm)$

NaiveKeywordSearch(T, P):
1. $K =$ BuildKeywordTree(P)
2. for i in len(T):
 1.

Ex: “I like bananas and potatoes”

Speeding up keyword tree searches

- Possible in $O(n + m + k)$
 - $O(n)$: Keyword tree construction
 - $O(m)$: Scan each position in T once (constant)

- Solution
 - Identify substrings whose suffix is prefix of other pattern

 Ex: (“other”, “theater”), $T =$ “otheater”

Failure functions for keyword trees

- Node label $L(v)$
 - Concatenation of letters from root to v
 - Ex: $L(w) =$ “oth”

- $lp(v)$
 - Length of suffix of v that is prefix of other pattern
 - Ex: $lp(w) = 2$
 - There is a unique node corresponding to this suffix; Why?

- Use link to prefix node to track failures
 - Failure link for w?

Failure links speed up keyword search

Keyword trees appropriate with fixed P

- Pattern set P known
 - Preprocessing of P to keyword tree
 - Speeds up search in unknown texts

- What if T is known but P is unknown?

Reverse keyword trees speed search

- Index words in text
 - Ex: “I like bananas and potatoes”

- Tree creation: $O(m)$

- Amortized search: $O(n)$

- Limitations?
Topics
- Keyword trees
- Suffix trees
- Constructing suffix trees

Suffix trees encode all suffixes in T
- **Text** $T = t_1t_2\ldots t_m$
 - Suffix set $S = \{t_1t_2\ldots t_m, t_2t_3\ldots t_m, \ldots, t_{m-1}t_m, t_m\}$
 - Ex: $T = \text{gctgca}$, $S = \{\text{gctgca, ctgca, tgc, gca, ca, a}\}$
- **Suffix tree of T**
 - Rooted directed tree
 - m leaves numbered 1 to m
 - Internal nodes (not root) have at least 2 children
 - Edges labeled with substring of T
 - All edges from same node start with different letters
 - For any leaf i, the path from root to leaf spells the S_i suffix

Suffix tree example
- $T = \text{gctgca}$

Searching with suffix trees
Find all occurrences of "gca", "c", and "gct" in "gctgca"

Suffix tree search algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>$S = \text{BuildSuffixTree}(T)$</td>
<td>$O(</td>
</tr>
<tr>
<td>2.</td>
<td>Use P to navigate S</td>
<td>$O(_)$</td>
</tr>
<tr>
<td>3. if end of P:</td>
<td></td>
<td>$O(_)$</td>
</tr>
</tbody>
</table>
| 4. else: | | $O(_)$

Handling strings with overlapping prefix/suffixes
- Append unique termination symbol
 - Ex: "$\$"
 - $T = \text{gctgca}\$"
Generalized suffix trees

- Leaves encode string ID and position (ID, pos)
- Applications
 - Find all occurrences of P in T (Ex: P = "gc")
 - Substring problem: Given S, find all T ∈ T such that S is substring of T
 - Find longest common substring of T₁ and T₂ (Ex: DNA contamination)

Topics

- Keyword trees
- Suffix trees
- Constructing suffix trees

Naïve suffix tree construction

- NaïveBuildSuffixTree(T): Running time: O(__)
 1. S = rootNode
 2. for i in len(T):
 1. Add suffix T[i:] + "$" to S

Ex: T = "gcgcac" → implicit suffix tree, I₅

Adding suffixes to growing tree

1. Use T[i:] + "$" to navigate S
2. Split edge above mismatch

Ex: T = "gcgcac", T[4:] + "$" = "gcac$"

Going from quadratic to linear construction

- Naïve algorithm scans last letter m² times
- Linear: constant #evaluations of each letter
 - Build suffix tree by extending suffixes from start
 - Given suffix tree for prefix T[1:i]
 - Build suffix tree for prefix T[1:i+1] by extending existing suffixes
 - Ex: T[1:i] = "gcgc", T[1:i+1] = "gcgcac"

High level suffix extension (Ukkonen) algorithm

- HighLevelUkkonen(T):
 1. Construct tree I₁
 2. for i in range(|T| - 1):
 1. for j in range(i + 1):
 1. Find end of path labeled T[j:i] in I₁
 2. Extend that path by T[j] if needed
 3. O(|T|)

Total: O(__)
Three suffix extension rules

- $T[j:i] = \beta$ is suffix of $T[1:i]$
- End of β found, extend such that $T[j+1]$ is in tree
 1. β ends at leaf
 - Append $T[j+1]$ to label
 2. No path from end of β starts with $T[j+1]$, but path continues
 - Create new leaf edge from end of β and label with $T[j+1]$
 - Number leaf with j
 3. Tree contains $T[j+1]$
 - Do nothing

T = "gctgcg"

Implicit suffix tree, I_5

Speeding up extensions: Suffix links

- Where to continue next extension?

Definition (Suffix link):

- $x\alpha$ is string
 - x single character
 - α substring (possibly empty)
- For internal node v labeled $x\alpha$, if another node $s(v)$ labeled α
 - Pointer from v to $s(v)$
 - Suffix link

Ex: Extending with "a"

Suffix link properties (Lemma 6.1.1)

- New internal node labeled xa in extension j
 - Either path α ends in internal node
 - Or internal node labeled α created in extension $j + 1$ in same phase

Proof:

- Extension rule 2 applies
 - In ext. j, path xa continued with character other than $T[j+1]$ (ex: c; that is, tree contains path xac and ac)
 - Two cases
 1. α continues with only c
 - Extension rule 2 creates node $s(v)$ at end of α (in ext. $j + 1$)
 2. α continues with additional characters
 - Node $s(v)$ already exists

Suffix link properties (Corollary 6.1.1)

Any newly created internal node will have an outgoing suffix link by the end of next extension

- Tree I_j has no internal nodes
- Phase $i + 1$:
 - When new internal node v created, correct suffix link $s(v)$ found in next extension (Lemma 6.1.1).
 - No internal node in last extension (single character)
 - All internal nodes known by end of phase so I_{i+1} has all its suffix links

- If internal node v has path-label xa, then there is a node $s(v)$ with path label α

Following suffix links

Ext. 1: always extends leaf 1
- Pointer gives O(1)

Ext. j:
- Go up to closest node (internal v, or root), path γ
- Internal: Go to $s(v)$; follow γ; extend
- Root ($\gamma = x\alpha$): Follow path α and extend

Single extension algorithm (SEA) ($j \geq 2$)

1. Find first node v above end of $T[j−1:i]$
 - At most one edge
 - Either internal node (with suffix link)
 - Or root
 - γ is string between v and end of $T[j−1:i]$
2. v internal?
 - Yes: go to $s(v)$, walk down following γ
 - No (root): follow path $T[j:i]$ from root
3. Extend with $T[j+1]$ using extension rules
4. If extension $j−1$ created internal node w
 - String α must end in node $s(w)$ (Lemma 6.1.1)
 - Create suffix link from w to $s(w)$
Suffix link in itself does not give speedup

- γ – backtrack and γ – traversal takes O(|γ|)
- Skip/count trick reduces traversal to O(|nodes|)
 - One edge e from s(v) must start with γ
 - Two possibilities (|e| = g'; |γ| = g)
 1. g' > g: skip to g on edge
 2. g' <= g:
 1. skip to node
 2. g = g' - g
 3. h = h + g'
 4. find edge corresponding to character γ[h]

Skip/count trick gives O(m^2) bound

- Def. Node depth of u: nodes from root to u
- Given suffix link (v, s(v))
 - Node depth of v is at most 1 greater than node depth of s(v)
 - All ancestors of v (except root) have suffix links to distinct ancestors of s(v)
 - Only extra depth can come from node labeled x
- Bound # node depth decreases to bound # edge traversals
 - Max node depth: m
 - Max decreases of node depth in phase: 2m
 - Up-walk decrease by 1
 - Suffix-link traversal decrease by at most 1
 - Down-walk increase by at least 1
 - Edge traversals bounded by 3m
 - Down-walking is O(m)

Edge-label compression

- Use index pairs to label edges
 - Start and end in T
 - Ex: T = "gctgcg"
- Extension rules (phase i + 1):
 1. Change label on leaf edge from (p, i) to (p, i + 1)
 2. Label new edge with (i + 1, i + 1)
- Reduces space from O(m^2) to O(m)

Observation 1: Rule 3 applies to all following extensions

- Rule 3: Tree contains T[j:i+1]
 - Tree also contains all T[j+1:i+1],... T[i+1:i+1]
- Trick 2:
 - End phase when rule 3 first applies
 - Remaining extensions done implicitly

Observation 2: Once a leaf, always a leaf

- Once leaf created (and labeled j), that leaf will remain
 - Rule 1 will always apply to extension
- For any phase i
 - Initial series of extensions with rule 1 or 2
 - j last such extension
 - j <= j_{i+1}
- Trick 3:
 - Use "current end" symbol e on leaves
 - Label new leaf edges (i + 1, e)
 - Extensions 1 to j, takes O(1)
 - Explicit extensions from j + 1

Single phase algorithm (SPA)

1. e = i + 1
2. for j in range(j_i+1, i+1):
 1. Use SingleExtensionAlgorithm for explicit extensions
 2. if “rule 3” applies:
 1. break
 3. j_{i+1} = j - 1
Ukkonen's algorithm runs in $O(m)$

- Implicit extensions is $O(1)$ per phase
 - $O(___)$ overall
- At most $2m$ explicit extensions
 - Current extension j^*
 - j^* never decreases
 - Can remain identical between two phases
- Node skips of explicit extensions bounded by $O(m)$
 - Node depth does not change between explicit extensions
 - Bound on depth decrease gives $O(m)$ skips

Creating true suffix tree

- Append $\$\$ to T and run algorithm
 - Ex: $T = “gctgc”$
 - Replace e with m: $O(m)$ tree traversal

Summary

- Ukkonen's construction builds suffix tree in $O(m)$
- Scans from start to end
- Uses properties of tree and problem to speed construction
 - Suffix links
 - Skip/count
 - Implicit extensions of suffixes/prefixes (Rule 3)
 - Implicit extensions of leaves (Rule 1)