Motif Discovery

Pål Sætrom
Eivind Coward

Topics

- Introduction: Motifs in DNA sequences
- Position Weight Matrices
- Motif-discovery – exact methods
- Motif-discovery – randomized methods

Microarrays measure global gene expression

- Array of probes measure gene RNA levels
- "All" genes in one sample
- Microarrays identify co-expressed genes

Transcription regulation

- Proteins (transcription factors - TFs) bind short DNA segments
 - Initiate transcription (core promoters)
 - Activate transcription (enhancers)
 - Repress transcription (silencers)
- Location of sequence elements varies
 - Core promoter close to transcription start site
 - Enhancers and silencers many kb away
- Problem: Identify DNA elements causing co-expression

Motif finding problem

- Find motif common to genes with common expression patterns

Input: Set of genes, G
Output: Motif common to all genes in G (and significant)

Related: common domain in set of proteins

"Zinc finger" domains bind DNA and RNA

Formal description of domain?
Prosite patterns define protein motifs

- Regular expressions
 - Concatenations:
 - Alternatives: []
 - Wildcards: x
 - Fixed repeats: x(l, h)
- Model the dominant positions in the domain
- Limitations?

Patterns in DNA

- Myc is a transcription factor
 - "leucine zipper"
 - "helix-loop-helix"
 - Dimer with Max
- Binds DNA
 - CACGTG
- Find the binding sites?

Identifying motifs by counting l-mers

1. Create index of all l-mers
2. Motifs are l-mers that occur in all (most) sequences
3. Compare actual occurrences with reference (negative control) set

- Consensus string too strict (3 of 7)
 - CACGTG
- Pattern too loose
 - C[AG][CG][TAC]G
 - CGGGAG, CGGCCG
- Solution?

Profiles are weighted sequence patterns

- Position weight matrix (PWM)
- Position-specific scoring matrix (PSSM)
- Position-specific weight matrix (PSWM)

Binding sites for Myc are ambiguous

- Consensus string too strict (3 of 7)
 - CACGTG
- Pattern too loose
 - C[AG][CG][TAC]G
 - CGGGAG, CGGCCG
- Solution?

Different alignments give different PWMs

- Last left by 1
 - Best PWM?
- Last right by 1
 - Best PWM?
Length and set of positions define PWM
- Set of t DNA sequences with n nucleotides each
- PWM length l
- PWM given by $s = (s_1, s_2, \ldots, s_t), 1 \leq s_i \leq n - l + 1$

PWM scores define “best” PWM
- Consensus score:
 \[\text{Score}(s) = \sum_{j=1}^{l} \max(P_{ij}) \]
 - $P(s)$ is profile matrix (PWM)
 - $M_j(i)$ is max in column j in PWM
- Entropy:
 \[\text{Entropy}(s) = -\sum_{j=1}^{l} \sum_{i=1}^{n} \frac{p_{ij}}{t} \log \frac{p_{ij}}{t} \]
 - p_{ij} is count at element (i,j) in PWM

Entropy measures degree of disorder
- Plot of entropy for a distribution of two symbols with frequency f and $1-f$:
 \[H = -\sum_{j=1}^{2} f_j \log f_j - f \log f - (1-f) \log (1-f) \]
- We can also define information content as $R = 1 - H$.

Sequence logos
- A sequence logo (Schneider & Stephens 1990) is a popular visualisation of a PWM motif.
- The relative height of each letter is proportional to its frequency in the PWM.
- The total height is proportional to the information content of each position:
 \[R_j = 2 - H_j = 2 \sum \frac{P_{ij}}{t} \log \frac{P_{ij}}{t} \]

PWM represented as a profile HMM
- Consensus score:
 \[\text{Score}(s) = \sum_{j=1}^{l} \max(P_{ij}) \]
 - $P(s)$ is profile matrix (PWM)
 - $M_j(i)$ is max in column j in PWM
- Entropy:
 \[\text{Entropy}(s) = -\sum_{j=1}^{l} \sum_{i=1}^{n} \frac{p_{ij}}{t} \log \frac{p_{ij}}{t} \]
 - p_{ij} is count at element (i,j) in PWM

Using consensus score to find best PWM
- Last left by 1
- Last right by 1
Motif finding problem (feasible definition)
- Given set of DNA sequences, find \(l \)-length PWM that maximizes consensus score

Input: A \(t \times n \) matrix of DNA, and the length \(l \)
Output: An array of \(t \) starting positions \(s = (s_1, s_2, ..., s_t) \) maximizing Score(s)

Easy?

Consensus score = counting mismatches with consensus string
- Max consensus score: \(lt \)
- Min consensus score: \(lt/4 \)

Score(s) =
\[
\sum_{i=1}^{n} M_{x,j}(i) - t \cdot d_H(w, s_i) - t \cdot \sum_{i=1}^{t} d_H(w, s_i)
\]
- \(w \) is consensus string of PWM
- \(d_H(w, s_i) \) is Hamming distance between \(w \) and \(s_i \)

- Solving motif finding = finding string with minimum total Hamming distance

Median string problem
- Given set of DNA sequences, find \(l \)-mer median string

Input: A \(t \times n \) matrix of DNA, and the length \(l \)
Output: A string \(v \) of \(l \) nucleotides (\(l \)-mer) with minimal total Hamming distance \(d_H(v, s) \) of all possible \(l \)-mers

Easier?

Naïve motif finding and median string solutions
- Motif finding
 - Find optimal starting positions \(s = (s_1, s_2, ..., s_t) \)
 - Consider all \((n-l+1)^t\) starting positions
- Median string
 - Find optimal \(l \)-mer
 - Consider all \(4^l \)-mers (DNA)

Brute force motif finding

BruteForceMotifSearch(t, n, l):
1. bestScore = 0
2. for each \((s_1, s_2, ..., s_t)\) from \((1, ..., 1)\) to \((n-l+1, ..., n-l+1)\):
 1. if Score(s) > bestScore:
 1. bestScore = Score(s)
 2. bestMotif = \((s_1, s_2, ..., s_t)\)
3. return bestMotif

O((n-l+1)^t) \cdot O(l) = O(lnt^t)

Brute force median string

BruteForceMedianString(t, n, l):
1. bestWord = AA...AA
2. bestDistance = \(\infty \)
3. for each \(l \)-mer word from A...A to T...T:
 1. if \(d_H(word, s) \) < bestDistance:
 1. bestScore = Score(s)
 2. bestWord = word
4. return bestWord

O(4^l) \cdot O(ntl) = O(ntl4^l)
Using tree to implement for loop

- Store starting positions in leaves
 - \((n - l + 1)!\) starting positions
 - "t-mer" in alphabet of \((n - l + 1)\) symbols
- Traverse tree (ignoring internal nodes)

\[
\text{NextLeaf}(a, L, k):
1. \text{for } i \in \text{range}(L, 1, -1):
 1. \text{if } a_i < k:
 1. \ a_i = a_i + 1
 2. \text{return } a
 2. \ a_i = 1
 2. \text{return } a
\]

Using search tree to skip unproductive branches

- Total score is bounded by score for \(i\)th first starting positions

 \[
 \text{Score}(s) \leq \text{Score}(s, i) + \{(t - i) \cdot l\}
 \]

 All remaining positions = current consensus

\[
\text{NextVertex}(a, i, L, k):
1. \text{if } i < L:
 1. \ a_i+1 = 1
 2. \text{return } (a, i+1)
2. \text{else:}
 1. \text{for } j \in \text{range}(L, 1, -1):
 1. \text{if } a_j < k:
 1. \ a_j = a_j + 1
 2. \text{return } (a, j)
 2. \text{return } (a, 0)
\]

Skip unproductive branches

\[
\text{Bypass}(a, i, L, k):
1. \text{for } j \in \text{range}(i, 1, -1):
 1. \text{if } a_j < k:
 1. \ a_j = a_j + 1
 2. \text{return } (a, j)
2. \text{return } (a, 0)
\]

Branch and bound motif finding

\[
\text{BranchAndBoundMotifSearch}(t, n, l):
1. \text{Randomly select starting positions } s = (s_1, s_2, \ldots, s_t)
2. \text{Form profile } P \text{ from } s
3. \text{bestScore} = 0
4. \text{for } i = 1 \text{ while } \text{Score}(s) > \text{bestScore}:
 1. \text{bestScore} = \text{Score}(s)
 2. \text{for } j \text{ in range}(t):
 1. \text{Find the highest scoring } l\text{-mer } a \text{ from } j\text{th sequence}
 2. \ a_j = \text{starting position of } a
 6. \text{return bestMotif}
\]

Conservative bound on median string

- Internal nodes represents word prefixes
 - Skip subtrees where prefix has higher distance than current best
 - Might be some extension with 0 distance

5.1.1: \(\text{optimisticDistance} = d_{\text{H}}(\text{word}, s)\)

A greedy approach to motif discovery

\[
\text{GreedyProfileMotifSearch}(t, n, l):
1. \text{Randomly select starting positions } s = (s_1, s_2, \ldots, s_t)
2. \text{Form profile } P \text{ from } s
3. \text{bestScore} = 0
4. \text{while } \text{Score}(s) > \text{bestScore}:
 1. \text{bestScore} = \text{Score}(s)
 2. \text{for } i \text{ in range}(t):
 1. \text{Find the highest scoring } l\text{-mer } a \text{ from } i\text{th sequence}
 2. \ a_i = \text{starting position of } a
5. \text{return } s
\]

Characteristics? \(n\) vs. \(t\)?
Greedy (gradient descent) optimization

- Optimization in energy landscapes
- Gradient descent will find local minima
 - GreedyProfileMotifSearch:
 1. Find the highest scoring l-mer a from ith sequence
 2. $s_i = \text{starting position of } a$

- Need means to escape
- How?

Allow moves “uphill”

- From statistical mechanics
 - State, S
 - Probability of finding a system in state S, $P(S)$
- Simulating system of discrete states
 - Allow suboptimal state S with probability $\sim P(S)$
 - Focus on neighboring states to narrow search

Gibbs sampling (in general)

1. Choose random starting state S
2. Choose random neighbor state S'
3. if $P(S') \leq P(S)$:
 1. $S = S'$
4. else
 1. $\Delta E = P(S') - P(S)$
 2. Set $S = S'$ with probability $e^{-\Delta E / (kT)}$
5. Go to 2

“Downhill” GD/KH

“Uphill” LA/SA

“Simulated annealing” feature

Computing probability of l-mer from P

$P(\alpha, P) = \prod_{l} p_{\alpha l}$

$P(\text{ACACGTGG}, P) = 1/7 \times 1/6 \times 7/8 \times 1/5 \times 7/1 \times 6/7$
$P(\text{ACGGGAGT}, P) = 1/7 \times 1/6 \times 7/8 \times 1/5 \times 7/1 \times 6/7$
$P(\text{TCACGTGG}, P) = 0$
$P(\text{TCCGGAGT}, P) = 0$ (!)

Alternative target functions

- Entropy
 $$\text{Entropy}(\alpha) = -\sum_{l} p_{\alpha l} \log \frac{p_{\alpha l}}{p_{l}}$$
- Relative entropy
 $$\text{RelativeEntropy}(\alpha) = \sum_{l} p_{\alpha l} \log \frac{p_{\alpha l}}{p_{l}}$$
 $$e^{-\Delta E / (kT)}$$
Use multiple starting/solution points

- “Random restart gradient descent”
 - Run GreedyProfileMotifSearch x times